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Abstract—Recently, deep learning methods have shown signif- 

icant improvements in communication systems.  In  this paper, we 

study the equalization problem over the nonlinear channel using 

neural networks. The joint equalizer and decoder based on neural 

networks are proposed to realize blind equalization and decoding 

process without the knowledge of channel state information (CSI). 

Different from previous methods,  we  use  two neural networks 

instead of one. First, convolutional neural network (CNN) is used 

to adaptively recover the transmitted signal from channel 

impairment and nonlinear distortions. Then the deep neural 

network decoder (NND) decodes the detected signal from CNN 

equalizer. Under various channel conditions, the experiment 

results demonstrate that the proposed CNN equalizer achieves 

better performance than other solutions based on machine learning 

methods. The proposed model reducesabout 2/3 of the parameters 

compared to state-of-the-artcounterparts. 
Besides,ourmodelcanbeeasilyappliedtolongsequencewith 
(n) complexity. 

Index Terms—Channel equalization, channel decoding, neural 
networks, deeplearning. 

 

I. INTRODUCTION 

Recently, deep learning-aided communication systems have 

demonstrated amazing improvements regarding performance 

and adaptability. An end-to-end communications systems 

based on deep learning is introduced in [1]. For channel 

decoding, the authors in [2] propose a systematic framework  

to construct deep neural network decoder of BCH  code,  

which achieves encouraging performance. The neural network 

decoder (NND) of polar codes [3] in [4, 5] shows significant 

improvement compared with conventionalmethods. 

Except for noise, communication channel usuallyintroduces 

inter-symbol interference (ISI) to the transmitted signal. The 

amplifiers and mixers will additionally cause nonlinear dis- 

tortion. Channel equalization is exploited to deal with these 

dispersive effects and delivers recovered signal to the channel 

decoder. Then the channel decoder performs decoding to 

correct errors duringtransmission. 

Various machine learning approaches have been utilized to 

address the nonlinear equalization without accurate knowledge 

of channel state information (CSI). These methods include 

deep neural network (DNN) [6], convolutional neural network 

(CNN)[7],Gaussianprocessesforclassification(GPC)[8]and 

support vector machine (SVM) [12], enabling the receiver side  

 

adaptively realize equalization. However, DNN equalizer 

in[6]is only practical for short codes and requires large 

amounts of 

parameters.Theequalizersin[8,9]bothusemultipletraining 

sequences to estimate the channel filter coefficients of ISI. 

These two methods also require other a priori  knowledgesuch 

as the distribution of channel filter coefficients and the 

Gaussian noise variance. These  assumptions  may  not  hold 

in practice. Consequently, it is hard to obtain the accurate 

results of CSI analytically without the a priori information.   

As indicated in [8], the performance of SVM equalizer after 

decoder ispoor. 

In this work, we propose neural network based joint channel 

equalizer and decoder. The CNN equalizer is first utilized to 

compensate the distortion of signal. Then the other polar NND 

is cascaded after CNN to decode the recovered sequence. The 

networks are trained with an offline and end-to-end manner, 

which is capable of carrying out equalization and decoding 

without the side information of CSI. The experiments show 

that promising bit error rate (BER) improvement is achieved 

compared with the other machine learning methods. 

The rest of this paper is organized as follows. Brief prelim- 

inaries about system setup  and  ML  equalizer  are  reviewed 

in Section II. In Section III, the details of proposed joint 

neural network equalizer and decoder as well as corresponding 

training methods are presented. The experiment results are 

shown in Section IV and analysis is given in Section V. 

SectionVIfinallyconcludesthepaper. 

 
II. PRELIMINARIES 

A. SystemSetup 

Throughout this paper, the discrete-time dispersive digital- 

communication system with a nonlinear channel is considered. 

In this case, the ISI, nonlinearities, and AWGN jointly result  

in the channel distortion. The overall system architecture 

isdepicted in Fig.1. 

1) Inter-symbol Interference: The channel with ISI is mod- 
eled as a finite impulse response (FIR) filter. The corre- 

sponding filter coefficients with length L are given by h = 

[h1, h2, ...,hL]T. The signal with ISI is equivalent to the 

convolutionofchannelinputwiththeFIRfilterasfollows: 

v = s⊗h, (1) 

wheres denotes the channel input sequence after modulation 

and ⊗ represents linear convolution operation. 
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Fig.  1.   System Architecture. 

 

2) Nonlinear Distortion: The nonlinearities in the commu- 

nication system are mainly caused by amplifiers and mixers, 

which can be modeled by a nonlinear function g[]. After being 

transmittedthroughthechannel,theoutputrinvolvedwith 

the input of CNN is 1-D real vector instead of typical 2-D 

image in the field of computer vision. Hence, we rewrite the 

2-D convolution with ReLU into 1-D form: 

C K 

ISI, nonlinearities, and AWGN is expressed as: 

ri= g[vi]+ni. (2) 

B. Maximum LikelihoodEqualizer 

FortheMLchannelequalizer,atrainingsequences◦= 
{s◦,s◦,...,s◦}withnknownbitsissenttothereceiverside 

yi,j=σ( Wi,c,kxc,k+j+bi), (5) 

c=1 k=1 

 

where W ∈ RM ×C×K denotes the weights tensor of M filters 

with C channels in a layer, each containing 1 × K sized filter. 

Besides, biis the i-th element of the bias vector b ∈ RM and 
1   2 n σ(·)heredenotestheReLUfunctionmax(x,0). 

to estimate the channel condition. The ML criterion for the 

channel coefficients is considered: 

ĥML=argmaxp(r◦s◦,h). (3) 
h 

After the channel coefficients are estimated, the following 

posterior probability of each transmitted bit can becalculated: 

p(si=s|r,ĥML),i=1,2...N.

 (4)

TheoutputofMLequalizeristhenfedintothechannel 

Different from ML equalizers [9], proposedconvolutional 
neuralnetworkequalizeristrainedwithanofflineandend-to- 

endmanner.Thereceivedtrainingchanneloutputr◦andtrue 

channel input s◦are required during training. The optimal 

parametersθ̂=W,bofneuralnetworkareestimated 

insteadoftheMLcriterionĥML: 

θ̂=argmaxp(ŝ=s◦r◦,θ). (6) 
θ 

decodertoobtaintheestimatem̂ for information bits m. 
Theoptimalparametersθ̂canbeobtainedbyusingthe 

III. JOINT NEURAL NETWORK EQUALIZER ANDDECODER 

A. Convolutional Neural NetworkEqualizer 

Due to the nonlinear nature of distortion, various neural 

networks are exploited to realize adaptive equalization. DNN 

[6]show promising performance. However, the densely con- 

nected networks require a large number of parameters and  the 

complexity grows exponentially with the code length. 

Although recurrent neural network (RNN) [10] can process 

long code, some performance degradation appears since the 

neuralnetworkisunabletomakethebestuseofthecontinuous 

inputs. Compared to other machine learning based equaliza- 

tion schemes, CNN requires minimal data preprocessing and 

have strong capabilities of feature extraction. A collection of 

neurons in CNN only respond to a restricted area of given 

inputs, which is suitable for aforementioned nonlinear channel 

model since the ISI only exists between consecutive bits of 

transmitted sequence and the influence of nonlinear distortion 

is independent for eachbit. 

The architecture of proposed convolutional neural network 

equalizer is illustrated in Fig. 1. The adopted CNN is com-  

posed of several convolutional layers with rectified linear  

units (ReLU) while the last layer only contains convolution 

operation.Underthecircumstancesofchannelequalization, 

stochastic gradient descent (SGD) with back propagation. 

Once the neural network has been trained, only channel output 

r is fed into the neural network equalizer for inference phase, 

which provides a blindequalization. 

 
B. Deep Neural NetworkDecoder 

Deep neural network of [4] shares similar 

feedforwardstructure with CNN, but the neurons in a fully-

connected layer are densely connected to the previous layer 

and each neuron associates with its weight. According to [4], 

deep neural network can be trained to achieve optimal BER 

performance over short code length. We use a multiple-layer 

NND to decode the output of convolutional neural network 

equalizer (see Fig. 1).The input of NND is a 1-D vector from 

CNN equalizer. The computation of single layer in NND can 

be formulated as following matrixmultiplication: 

y = σ(Wx+b), (7) 

whereWistheweightscorrespondingtheinputx.Notethat 

σ( ) denotes the activation function (ReLU or sigmoid). The 

sigmoid activation (1 + exp−x)−1is applied to squash the 

output of NND to range (0, 1). 
                        www.ijesonline.com (ISSN: 2319-6564) (Page No.: 107) 
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ŝ m̂ 

n 

H(z) 
Channel 
Encoder 

NN Decoder 

g(v) 

C
o

n
v 

+
 R

e
LU

 

C
o

n
v 

+
 R

e
LU

 

C
o

n
v 



International Journal of Engineering Sciences Paradigms and Researches: Volume 47, Issue 01, Quarter 01 (January to March 2018) 

Σ
L

 

× 

{ } 
× 

{ } 

{ } 

{ } 

{ } 

{ } 
{ } 

{ } 

C. Training 

The performance of neural networks greatly  dependson the 

training process. First, the loss function should be care-  fully 

selected to give an accurate measure of the distance between 

neural network outputs and correct labels. Then the 

hyperparameters related to network structure and training also 

determinethecapabilitiesofneuralnetwork. 

Proposed neural network equalizer and decoder consist of 

two neural networks. For the CNN equalizer, mean squared 

error (MSE) is adopted as the equalization loss function: 

L(ŝ,s)=
1Σ

|ŝ−s|2, (8) 

TABLE I 
SUMMARY OF EXPERIMENTAL SETTINGS. 

 

 

N  
i

 ii 

whereŝdenotestheestimatedequalizationoutputofCNNequalizer
andsistheactualtransmittedsignal. 

For the NND, we use binary cross-entropy (BCE) as the 

decoding loss function: 

 
The training and testing data are both randomly generated 

over AWGN channel with ISI and nonlinearity distortion from 

SNR 0 dB to 11 dB. Each training mini-batch contains 240 

samples (20 frames per SNR). 50000 frames per SNR areused 

for testing. The length of each frame is 8-bit. We use mini-

batch SGD with back propagation to update theweights. 

(m̂,m)=
1 

m̂ 
N 

i
 

i 

log(mi)+(1−m̂ i)log(1−mi),(9) Learning rate is set to 0.001 and Adam optimizer [11] is 

utilized to adjust the learning rate dynamically.The weights 

wherem̂denotesthedecodedoutputofNNDandmisthe are initialized with normal distribution N (µ = 0, σ = 1). 

original information sequence. 

Hence, the total loss of these two neural networksbecomes: 

Ltotal=L(ŝ,s)+L(m̂,m). (10) 

The goal of training is to minimize the total loss of Eq.  

(10). SGD and other deep learning approaches can be utilized 

to find to optimal network parameters resulting in the minimal 

loss. 

IV. EXPERIMENTS 

A. ExperimentalSetup 

The proposed models are implemented on the advanced 

deep learning framework PyTorch. GPU (NVIDIA GeForce 

GTX 1080 Ti) is used to accelerate training. Polar code with 

1/2 rate and binary phase shift keying (BPSK) modulation    

is adopted. Without loss of generality, we use the following 

notations to define the architecture of neural networks used  in 

this paper. The CNN with D convolutional layers, the i-     th 

layer containing Mifilters with size 1 K, is denoted as  

CNNM1, M2, ..., MD. The deep neural network with D 

layers, the i-th layer containing Hinodes, is expressed by DNN 

H1, H2, ..., HD. It should be noted that the first and  last layer 

of DNN are the input layer and the output layer, respectively. 

We adopt the structure of CNN 6, 12, 24, 12, 6, 1with 

padding size 1 since 1   3 filter size can not only maintain    

the length of input vector but also preserve the dimension      

of intermediate feature maps. Besides, this configuration bal- 

ances complexity and performance.According  to  our  test, no 

more gain is observed over larger  CNN  while  fewer  filters 

will cause performance degradation. DNN structure is 16, 128, 

64, 32, 8 , which has been demonstrated to achieve 

optimaldecodingperformanceforshortpolarcodesin[4]. 

CNN is trained for 5000 iterations. The experimental settings 

are summarized in Table I. 

B. Experiment Results over LinearChannel 

In the first experiment, the dispersive  channel  with  ISI  

and AWGN. To remain consistent with [8–10], the associated 

impulse response with length L = 3 can be expressed as the 

followingequation: 

H(z)=0.3482+8704z−1+0.3482z−2. (11) 

There is no strict rules that precisely measure the propersize 

of neural networks for a specific task. Hence, various config- 

urations of CNN are tested to determine the best structure. 

The BER results for each configuration is shown in Fig. 2. It 

can be observed that more filters guarantee better performance 

under 4-layer CNN (red line). However, deeper structure 

outperforms the shallow ones with equal or less amount of 

parameters  (blue  and  green line). CNN 6,12,24,12,6,1 

(containing 2257 weights) achieves very close performance 

with CNN 8, 16, 32, 16, 8, 1 (containing 3969 weights) and 

CNN 32, 64, 32, 1 (containing 12609weights). 

The comparison between proposed CNN equalizer and other 

equalization schemes is also conducted (see Fig. 3).The 

structure of CNN equalizer is 6, 12, 24, 12, 6, 1 . ML-BCJR 

and Bayesian methods [9] are tested with different lengths of 

the training sequence (10 and 20). Besides, the performance  

of ML equalizer with the knowledge of perfect CSI is also 

depicted. Proposed CNN equalizer approaches to perfect CSI 

under low SNR range and outperforms both ML-BCJR and 

Bayesianequalizerbyabout0.5dB. 

C. Experiment Results over NonlinearChannel 

In the second experiment, the nonlinearity is additionally 

considered. To intuitively illustrate the nonlinear function of 
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Parameters 

CNN structure 
DNN structure 

Channel 
SNR Range 

Training Samples per SNR 
Testing Samples per SNR 

Mini-batch Size 

Optimizer 

Value 

{6,12,24,12,6,1},K =3 

AWGN 
0 dB to 11 dB 

20 
50000 
240 

Mini-batch SGD with Adam 

{16,128,64,32,8} 

Learning Rate Lr=0.001 

 WeightsInitialization N ∼ (µ = 0, σ =1)  
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Fig. 2. BER comparison of CNN equalizer with different structures over  
linearchannel. 
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Fig. 4.Decision boundary of proposed CNN equalizer with nonlinear channel 

h = [1, 0.5], g(v) = v − 0.9v3and SNR = 1. 

 
equalization schemes show promising performance and lower 

complexity. We compare proposed CNN equalizer with GPC 

[8] and SVM algorithms over the nonlinear channel in Eq. 

2and ISI in Eq. 11. Consistent with [8], a preamble sequence 

with 200 training samples is  used  for  channel  estimation. 

As illustrated Fig. 5, CNN outperforms GPC and SVM with 

approximately0.2dBto0.5dBgainintermsofBER. 
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Fig. 3.BER comparison of proposed CNN, Bayesian [9] and ML-BCJR 
equalizers over linear channel. 
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CNN, the decision boundary of proposed equalizer is drawn in 

Fig. 4. The adopted CNN structure is 6, 12, 24, 12, 6, 1 and 

the corresponding nonlinear channel is h = [1, 0.5] and g(v)= 

v 0.9v3. The shaded region represents that the hard decision 

ofCNNoutputisŝi=+1whensi=+1transmitted.Itcan 
beseenthatCNNconstructsanonlineardecisionboundary 
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to recover the original symbol from the received signal mixed 

with ISI and nonlinear distortion. This is quite similar to that 

in[12]. 

In the following sections, the nonlinear function in Eq. (12) 

is considered, which is the same as [6, 8, 9]: 

|g(v)| = |v| + 0.2|v| − 0.1|v| +0.5cos(π|v|). (12) 

Forthecaseofnonlinearchannel,BCJRmethodrequiresac- 

curate CSI, and its computational complexity grows exponen- 

tially with the code length. Machine learning methods based 

Fig. 5.BER comparison of proposed CNN, SVM and GPC [8]equalizers  over 
nonlinearchannel. 

 
D. ExperimentResultsofJointEqualizerandDecoder 

In   the   third   experiment,   a    DNN    with    structure 

16, 128, 64, 32, 8 is introduced as the NND to increase the 

error correcting capability. The NND receives the soft output 

of CNN equalizer to recover the originally transmitted bits. 

The CNN trained over nonlinear channel in Eq. (12) with ISI 

in Eq.(11) and the NND trained over AWGN channel can be 
                         www.ijesonline.com (ISSN: 2319-6564) (Page No.: 109) 
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cascaded directly (CNN+NND). But the CNN output may not 

necessarily follow the same distribution of AWGN channel 

output, which will potentially cause  degradation.  Hence,  

joint training NND using the soft output of CNN equalizer 

(CNN+NND-Joint) can compensate the performance  loss.  

We test on polar code (16,8) and the baselines are identical 

with [6]. As shown in Fig. 6, GPC+SC denotes the GPC 

equalization and successive cancellation (SC) decoding while 

DL denotes the deep learning method in [6].CNN+DNN 

outperforms GPC+SC with 1  dB,  and  joint  training  ofCNN 

and NND has about 0.5 dB gain over CNN+DNN. 

Performance of CNN+DNN-Joint scheme is very close to DL 

method, and there is a slight improvement on high SNR. The 

advantages of proposed CNN+NND is that it requires much 

less parameters ( 15, 000) than DL [6] ( 48, 000) without 

increasing the complexity. Moreover, CNN equalizer is also 

feasible for longcodes. 
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Fig. 6.BER performance of various joint equalization and decoding scheme 
over nonlinear channel. GPC+SC and DL methods are redrawn from [6]. 

 
V. ANALYSIS 

A. RelatedWork 

CNN is widely used in image denoising[13]. Inspired by 

this, a CNN is cascaded behind the belief propagation (BP) de- 

coder to deal with correlated Gaussian noise in [14]. However, 

the limitation is that conventional BP decoder is untrainable 

thus unable to cope with ISI and nonlinear distortion, which 

may cause degradation to the whole system. Our proposed 

CNN equalizer learns the features directly from channel out- 

put, providing soft messages to the following channel decoder. 

This is more robust due to the strong adaptability of neural  

network. Compared with the DNN equalizer in [6],CNN 

equalizer trained under short codes can be easily extended      

to arbitrary code length with negligible degradation. And we 

consider both ISI and nonlinearities rather than just ISI in [7]. 

The system architecture is similar to the CNN based blind 

detection scheme for SCMA in [15]. More complex channel 

impairmentsaretakenintoconsiderationinthispaper. 

B. ComplexityAnalysis 

The complexity of CNN forward inference is determined  

by filter size K, input length n and network depth D. Pro- 

posed CNN equalizer performs 1-D convolution, associating 

complexity (n). Once trained, filter size and network depth  

are fixed. Hence, the overall complexity of CNN equalizer     

is (n), indicating that the computational complexity grows 

linearly with sequence length. According to [8], the inference 

complexity of SVM  is(n)  while  GPC  requires  (n2)  without 

anyoptimization. 

VI. CONCLUSION 

We present a novel CNN based equalizer to reduce the 

effects of channel impairments. Then a polar NND is utilized 

to recover the correct information. The CNN equalizer is 

adaptive for different channel conditions and shows substan- 

tial improvements compared with state-of-the-art results. The 

future work will focus on the efficient implementation of CNN 

equalizer and explore the possibility of joint equalization and 

decoding over long codes based on [2] and [5]. 
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